124 research outputs found

    Effects of the galactic magnetic field upon large scale anisotropies of extragalactic Cosmic Rays

    Full text link
    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.Comment: 11 pages, 4 figure

    Sommerfeld Enhancement of DM Annihilation: Resonance Structure, Freeze-Out and CMB Spectral Bound

    Full text link
    In the last few years there has been some interest in WIMP Dark Matter models featuring a velocity dependent cross section through the Sommerfeld enhancement mechanism, which is a nonrelativistic effect due to massive bosons in the dark sector. In the first part of this article, we find analytic expressions for the boost factor for three different model potentials, the Coulomb potential, the spherical well and the spherical cone well and compare with the numerical solution of the Yukawa potential. We find that the resonance pattern of all the potentials can be cast into the same universal form. In the second part of the article we perform a detailed computation of the Dark Matter relic density for models having Sommerfeld enhancement by solving the Boltzmann equation numerically. We calculate the expected distortions of the CMB blackbody spectrum from WIMP annihilations and compare these to the bounds set by FIRAS. We conclude that only a small part of the parameter space can be ruled out by the FIRAS observations.Comment: 15 pages, 15 figures, version accepted by JCA

    A new deep SCUBA survey of gravitationally lensing clusters

    Full text link
    We have conducted a new deep SCUBA survey, which has targetted 12 lensing galaxy clusters and one blank field. In this survey we have detected several sub-mJy sources after correcting for the gravitational lensing by the intervening clusters. We here present the preliminary results and point out two highlights.Comment: 4 pages, 2 figures, "Multiwavelength Cosmology" Mykonos, June 2003, conference proceeding

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines

    Full text link
    We discuss a method for detecting the emission from high redshift galaxies by cross correlating flux fluctuations from multiple spectral lines. If one can fit and subtract away the continuum emission with a smooth function of frequency, the remaining signal contains fluctuations of flux with frequency and angle from line emitting galaxies. Over a particular small range of observed frequencies, these fluctuations will originate from sources corresponding to a series of different redshifts, one for each emission line. It is possible to statistically isolate the fluctuations at a particular redshift by cross correlating emission originating from the same redshift, but in different emission lines. This technique will allow detection of clustering fluctuations from the faintest galaxies which individually cannot be detected, but which contribute substantially to the total signal due to their large numbers. We describe these fluctuations quantitatively through the line cross power spectrum. As an example of a particular application of this technique, we calculate the signal-to-noise ratio for a measurement of the cross power spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that the cross power spectrum can be measured beyond a redshift of z=8. Such observations could constrain the evolution of the metallicity, bias, and duty cycle of faint galaxies at high redshifts and may also be sensitive to the reionization history through its effect on the minimum mass of galaxies. As another example, we consider the cross power spectrum of CO line emission measured with a large ground based telescope like CCAT and 21-cm radiation originating from hydrogen in galaxies after reionization with an interferometer similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an example of cross correlating CO line emission and 21cm line emission from galaxies after reionizatio

    What fraction of stars formed in infrared galaxies at high redshift?

    Full text link
    Star formation happens in two types of environment: ultraviolet-bright starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break galaxies at high redshift) and infrared-bright dust-enshrouded regions (which may be moderately star-forming like Orion in the Galaxy or extreme like the core of Arp 220). In this work I will estimate how many of the stars in the local Universe formed in each type of environment, using observations of star-forming galaxies at all redshifts at different wavelengths and of the evolution of the field galaxy population.Comment: 7 pages, 0 figs, to appear in proceedings of "Starbursts - From 30 Doradus to Lyman break galaxies", edited by Richard de Grijs and Rosa M. Gonzalez Delgado, published by Kluwe

    Cosmological bounds on sub-MeV mass axions

    Full text link
    Axions with mass greater than 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for masses above 20 eV the axion lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended from 0.7 eV till 300 keV, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints complement stellar-evolution limits and laboratory bounds.Comment: 19 pages, 10 figure

    Astrophysical constraints on primordial black holes in Brans-Dicke theory

    Full text link
    We consider cosmological evolution in Brans-Dicke theory with a population of primordial black holes. Hawking radiation from the primordial black holes impacts various astrophysical processes during the evolution of the Universe. The accretion of radiation by the black holes in the radiation dominated era may be effective in imparting them a longer lifetime. We present a detailed study of how this affects various standard astrophysical constraints coming from the evaporation of primordial black holes. We analyze constraints from the present density of the Universe, the present photon spectrum, the distortion of the cosmic microwave background spectrum and also from processes affecting light element abundances after nucleosynthesis. We find that the constraints on the initial primordial black hole mass fractions are tightened with increased accretion efficiency.Comment: 15 page

    Formulation and constraints on decaying dark matter with finite mass daughter particles

    Full text link
    Decaying dark matter cosmological models have been proposed to remedy the overproduction problem at small scales in the standard cold dark matter paradigm. We consider a decaying dark matter model in which one CDM mother particle decays into two daughter particles, with arbitrary masses. A complete set of Boltzmann equations of dark matter particles is derived which is necessary to calculate the evolutions of their energy densities and their density perturbations. By comparing the expansion history of the universe in this model and the free-streaming scale of daughter particles with astronomical observational data, we give constraints on the lifetime of the mother particle, Γ−1\Gamma^{-1}, and the mass ratio between the daughter and the mother particles mD/mMm_{\rm D}/m_{\rm M}. From the distance to the last scattering surface of the cosmic microwave background, we obtain Γ−1>\Gamma^{-1}> 30 Gyr in the massless limit of daughter particles and, on the other hand, we obtain mD>m_{\rm D} > 0.97mMm_{\rm M} in the limit Γ−1→0\Gamma^{-1}\to 0. The free-streaming constraint tightens the bound on the mass ratio as (Γ−1/10−2Gyr)≲((1−mD1/mM)/10−2)−3/2(\Gamma^{-1}/10^{-2}{\rm Gyr}) \lesssim ((1-m_{\rm D1}/m_{\rm M})/10^{-2})^{-3/2} for Γ−1<H−1(z=3)\Gamma^{-1} < H^{-1}(z=3).Comment: 20 pages, 7 figure

    CO, 13CO and [CI] in Galaxy Centers

    Full text link
    Measurements of [CI], (J=2-1) 13CO and (J=4-3) 12CO emission from quiescent, starburst and active galaxy centers reveal a distinct pattern characterized by relatively strong [CI] emission. The [CI] to 13CO emission ratio increases with central [CI] luminosity. It is lowest in quiescent and mild starburst centers and highest for strong starburst centers and active nuclei. Neutral C abundances are close to, or even exceed, CO abundances. The emission is characteristic of warm and dense gas rather than either hot tenuous or cold very dense gas. The relative intensities of CO, [CI], [CII] and far-infrared emission suggest that the dominant excitation mechanism in galaxy centers may be different from that in Photon-Dominated Regions (PDRs).Comment: 6 pages, to appear in the Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galactic Nuclei", Eds. Y.Hagiwara, W.A.Baan, H.J.van Langevelde, 2004, a special issue of ApSS, Kluwe
    • …
    corecore